Inscriere cercetatori

Site nou !

Daca nu va puteti recupera parola (sau aveti alte probleme), scrieti-ne la pagina de contact. Situl vechi se gaseste la adresa


Homotopy type invariants of four-dimensional knot complements

Domenii publicaţii > Matematica + Tipuri publicaţii > Tezã de doctorat (nepublicatã)

Autori: A.I. Suciu

Editorial: Columbia University, New York, NY, 1984.


This thesis studies the homotopy type of smooth four dimensional knot complements. In contrast with the classical case, high-dimensional knot complements with fundamental group different from are never aspherical. The second homotopy group already provides examples of the way in which a knot in S^4 can fail to be determined by its fundamental group (C. McA. Gordon, S. P. Plotnick).

A natural class of knots to investigate is ribbon knots. They bound immersed disks with „ribbon singularities”. A method is given for computing pi_2 of such knot complements. I show that there are infinitely many ribbon knots in S^4 with isomorphic pi_1 but distinct pi_2 (viewed as pi_1-modules). They appear as boundaries of distinct ribbon disk pairs with the same exterior. These knots have the fundamental group of the spun trefoil, but none in a spun knot.

To a four-dimensional knot complement, one can associate a certain cohomology class, the first k-invariant of Eilenberg, MacLane and Whitehead. In a joint paper, Plotnick and I showed that there are arbitrarily many knots in S^4 whose complements have isomorphic pi_1 and pi_2 (as pi_1 – modules), but distinct k-invariants. Here I prove this result using examples which are somewhat more natural and easier to produce. They are constructed from a fibered knot with fiber a punctured lens space and a ribbon knot by surgery.

The proofs involve writing down explicit cell complexes, computing twisted cohomology groups, combinatorial group theory and calculations in group rings.

Cuvinte cheie: Knots in the 4-sphere, homotopy type