Inscriere cercetatori

Site nou !

Daca nu va puteti recupera parola (sau aveti alte probleme), scrieti-ne la pagina de contact. Situl vechi se gaseste la adresa


Results on Transforming NFA into DFCA

Domenii publicaţii > Ştiinţe informatice + Tipuri publicaţii > Articol în revistã ştiinţificã

Autori: Cezar Câmpeanu, Lila Kari, Andrei Paun

Editorial: C. Calude, Gh. Pãun, G. Rozenberg, Fundamenta Informaticae, 64, Number 1-4, p.53 - 63, 2005.


In this paper we consider the transformation from (minimal) non-deterministic finite automata (NFAs) to deterministic finite cover automata (DFCAs). We want to compare the two equivalent accepting devices with respect to their number of states; this becomes in fact a comparison between the expression power of the nondeterministic device and the expression power of the deterministic with loops device. We prove a lower bound for the maximum state complexity of deterministic finite cover automata obtained from non-deterministic finite automata of a given state complexity n, considering the case of a binary alphabet. We show, for such binary alphabets, that the difference between maximum blow-up state complexity of DFA and DFCA can be as small as 2[n/2]−² compared to the number of states of the minimal DFA. Moreover, we show the structure of automata for worst case exponential blow-up complexity from NFA to DFCA. We conjecture that the lower bound given in the paper is also the upper bound. Several results clarifying some of the structure of the automata in the worst case are given (we strongly believe they will be pivotal in the upper bound proof).

Cuvinte cheie: nondeterministic automata, cover automata, state complexity, Finite automata, deterministic automata