Inscriere cercetatori

Premii Ad Astra

premii Ad Astra

Asociația Ad Astra a anunțat câștigătorii Premiilor Ad Astra 2022: http://premii.ad-astra.ro/. Proiectul și-a propus identificarea și popularizarea modelelor de succes, a rezultatelor excepționale ale cercetătorilor români din țară și din afara ei.

Asociatia Ad Astra a cercetatorilor romani lanseaza BAZA DE DATE A CERCETATORILOR ROMANI DIN DIASPORA. Scopul acestei baze de date este aceea de a stimula colaborarea dintre cercetatorii romani de peste hotare dar si cu cercetatorii din Romania. Cercetatorii care doresc sa fie nominalizati in aceasta baza de date sunt rugati sa trimita un email la cristian.presura@gmail.com

Fabrication and evaluation of a 3-dimensional microchip device where carbon microelectrodes individually address channels in the separate fluidic layers

Domenii publicaţii > Chimie + Tipuri publicaţii > Articol în revistã ştiinţificã

Autori: Matthew K. Hulvey, Luiza I. Genes, Dana M. Spence, R. Scott Martin

Editorial: The Analyst, 132, p.1246, 2007.

Rezumat:

A fabrication method that results in a 3-dimensional fluidic device containing
poly(dimethylsiloxane) (PDMS) -embedded microelectrodes that individually address each layer is described. The two electrode-containing layers and the polycarbonate membrane are reversibly
sealed together, eliminating the need for plasma oxidation during device assembly, while enabling simultaneous amperometric detection in membrane-separated fluidic channels. The electrodes were characterized using microchip-based flow analysis. It was found that PDMS-embedded electrodes have a limit of detection (400 nM for catechol) that is 5-fold lower than that reported for microchip-based flow analysis with similar electrodes in a hybrid PDMS–glass device. The selectivity of the carbon ink microelectrodes can be tuned by a simplified modification procedure;
this was demonstrated by the selective detection of nitric oxide over possible interferents. Finally, the ability to monitor processes occurring in separate layers of a 3-dimensional device was shown by the simultaneous detection of catechol on either side of the polycarbonate membrane. The electrode response in each fluidic channel was found to be linear as a function of concentration and the transport between layers could be controlled by varying the linear velocities of each fluidic
channel. The ability to fabricate and operate this type of 3-dimensional device will be useful for the development of cell-based in vivo mimics that involve the transport of molecular messengers and/or pharmaceuticals across layers of immobilized cells

Cuvinte cheie: microfluidics, nitric oxide, PDMS-embedded electrodes