Inscriere cercetatori

Site nou !

Daca nu va puteti recupera parola (sau aveti alte probleme), scrieti-ne la pagina de contact. Situl vechi se gaseste la adresa


ZnO as a material mostly adapted for the realization of room-temperature polariton lasers

Domenii publicaţii > Fizica + Tipuri publicaţii > Articol în revistã ştiinţificã

Autori: M. Zamfirescu, A. Kavokin, B. Gil, G.Malpuech, and M. Kaliteevski

Editorial: Phys. Rev. B, 65, p.161205, 2002.


Wannier-Mott excitons in the wurzite-type semiconductor material ZnO are stable at room temperature, have an extremely large oscillator strength, and emit blue light. This makes ZnO an excellent potential candidate for the fabrication of room-temperature lasers where the coherent light amplification is ruled by the fascinating mechanism of the Bose condensation of the exciton polaritons. We report the direct optical measurement of the exciton oscillator strength f in ZnO. The longitudinal transverse splitting of the exciton resonances G5(B) and
G1(C) are found to achieve record values of 5 and 7 meV, respectively, that, is two orders of magnitude larger than in GaAs. Second, we propose a model ZnO-based microcavity structure that is found to be the most adapted structure for the observation of the polariton laser effect. We thus can compute the phase diagram of the lasing regimes. A record value of the threshold power of 2 mW per device ~at power density of 3000 W/cm2) at room temperature is found for the model laser structure.

Cuvinte cheie: polariton laser, optical microcavities, ZnO