Inscriere cercetatori

Premii Ad Astra

premii Ad Astra

Asociația Ad Astra a anunțat câștigătorii Premiilor Ad Astra 2022: http://premii.ad-astra.ro/. Proiectul și-a propus identificarea și popularizarea modelelor de succes, a rezultatelor excepționale ale cercetătorilor români din țară și din afara ei.

Asociatia Ad Astra a cercetatorilor romani lanseaza BAZA DE DATE A CERCETATORILOR ROMANI DIN DIASPORA. Scopul acestei baze de date este aceea de a stimula colaborarea dintre cercetatorii romani de peste hotare dar si cu cercetatorii din Romania. Cercetatorii care doresc sa fie nominalizati in aceasta baza de date sunt rugati sa trimita un email la cristian.presura@gmail.com

Neogene-Quaternary magmatism and geodynamics in the Carpathian-Pannonian region: A synthesis.

Domenii publicaţii > Ştiinţele pământului şi planetare + Tipuri publicaţii > Articol în revistã ştiinţificã

Autori: Seghedi, I., Downes, H., Szakács, A., Mason, P.R.D., Thirlwall, M.F., Rosu, E., Pécskay, Z., Márton, E., Panaiotu, C.

Editorial: Elsevier, Lithos, 72, 3-4, p.117-146, 2004.

Rezumat:

In the Carpathian–Pannonian region in Neogene times, westward-dipping subduction in a land-locked basin caused collision of two lithospheric blocks (Alcapa and Tisia) with the southeastern border of the European plate. Calc-alkaline and alkaline magmatism was closely related to subduction, rollback, collision and extension. From the spatial distribution of the magmatic activity, four segments can be defined: Western Segment (magmatism occurring on the Alcapa block), Central Segment (magmatism occurring on both Alcapa and the Tisia blocks), South-Eastern Segment and Interior Segment (both on the Tisia block).

Most calc-alkaline magmatism in the region resulted from melting of a heterogeneous asthenospheric mantle source modified by addition of fluids and sediment. Assimilation and fractionation processes at shallow crustal levels occurred in most of the segments, strongly masking the deeper source processes. Long-term subduction, rollback and/or delamination led to contamination of the asthenosphere beneath the Western Segment. Here, large-volume partial melts of the contaminated mantle caused underplating and crustal anatexis, leading to mixing of mantle-derived calc-alkaline magmas with crustal melts. In the Central Segment, calc-alkaline magmas were formed by subduction and rollback, followed by back-arc extension and slab breakoff. A variable mantle source is indicated in the back-arc setting and larger amount of fluid-induced metasomatism, source enrichment and assimilation nearer to the trench. In the Interior Segment, evolution from typical calc-alkaline magmas to adakite-like ones was related to extension due to fast rotations and transtensional tectonics. Here, calc-alkaline magmas formed by decompression melting of a heterogeneous crust–mantle lithosphere, while adakite-like melts resulted from fliud-dominated melting of the lithosphere. Along the South-Eastern Segment, slab breakoff was responsible for the generation of typical calc-alkaline magmas, but in the extreme south of the segment, shallow level tearing of the slab followed breakoff. Strike–slip tectonics allowed the rise of hot asthenosphere and generation of adakite-like magmas, via slab-melting, along the torn edge of the East European Plate. Alkalic basaltic volcanism with an OIB-like asthenosphere source followed the calc-alkaline stage (Western Segment), or was contemporaneous with it (South-Eastern and Interior Segments) mainly in response to local extensional tectonics.

Cuvinte cheie: Carpathian–Pannonian region, Geodynamic processes, Calc-alkaline magmas, Adakite-like magmas, Neogene-Quaternary

URL: http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V6J-4BRKNS3-2&_user=8471986&_coverDate=02%2F29%2F2004&_alid=1707710508&_rdoc=2&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5816&_sort=r&_st=13&_docanchor=&view=c&_ct=6&_acct=C0