Inscriere cercetatori

Site nou !

Daca nu va puteti recupera parola (sau aveti alte probleme), scrieti-ne la pagina de contact. Situl vechi se gaseste la adresa


Time synchronization and ranging in OFDM systems using time-reversal

Domenii publicaţii > Stiinte ingineresti + Tipuri publicaţii > Articol în revistã ştiinţificã

Autori: T. E. Abrudan, A. Haghparast, V. Koivunen

Editorial: IEEE, IEEE Transactions on Instrumentation and Measurement, PP, p.99, 2013.


In this paper, we propose a new two-way time synchronization (TS) method for OFDM-based wireless systems. It relies on the time-reversal (TR) technique in order to remove the effect of the channel phase after the signal round-trip. For this reason, the method is named TR-TS. TR technique yields a linear phase rotation across subcarriers, regardless whether the channel is minimum, maximum, or mixed phase. This phase is proportional to the difference of the OFDM symbol-timing synchronization errors at the two receivers. Thus, the clock offset between the radios is determined using the local reception times and the estimated linear phase resulting from the TR technique. A reliable low-complexity algorithm called FFT-WLS is proposed to estimate the linear phase slope, and its mean-square error is compared to the Cram´er-Rao Lower Bound (CRLB). The results show that the proposed algorithm attains the CRLB at low SNR, even when a single OFDM symbol is used. The OFDM packets are time-stamped at the MAC layer, which allows eliminating errors caused by different and varying delays in the internal lower level processing of the data. Hence, an accurate estimate of the clock offset is obtained. The impact of various non-idealities on the proposed algorithm is also studied. In addition, we propose a ranging method that employs the novel time synchronization method and a first-path delay estimation technique.
The performance of the proposed methods is studied in simulations, as well as using real-world measured channels. The results show that the proposed methods can be successfully applied in low to moderate mobility scenarios such as indoors despite harsh multipath, since they rely on channel reciprocity.

Cuvinte cheie: - // Clocks, synchronization, distance measurement, radio communication, orthogonal frequency division multiplexing