Inscriere cercetatori

Site nou !

Daca nu va puteti recupera parola (sau aveti alte probleme), scrieti-ne la pagina de contact. Situl vechi se gaseste la adresa old.ad-astra.ro

Facebook

Diverse interneuron populations have highly specific interconnectivity in the rat piriform cortex.

Domenii publicaţii > Ştiinţe medicale + Tipuri publicaţii > Articol în revistã ştiinţificã

Autori: Gavrilovici C, D'Alfonso S, Poulter MO

Editorial: J Comp Neurol. , 518(9), p.1570-88, 2010.

Rezumat:

Previous studies have suggested that the patterns of innervation and high interconnectivity of the piriform cortex (PC) provide for strong olfactory hippocampal memory; however, these same attributes may create high seizurogenic tendencies. Thus, understanding this wiring is important from a physiological and pathophysiological perspective. Distinct interneurons expressing differing calcium binding proteins (CBPs), parvalbumin (PV), calbindin (CB), and calretinin (CR), have been shown to exist in PC. However, a comprehensive examination of the distribution and innervation patterns of these neurons has not been done. Thus the purpose of this study was to combine the analysis of the CBP cell localization with analysis of their innervation patterns. Each type was differentially localized in the three layers of the PC. Only CR-positive neurons were found in layer 1. PV and CB are coexpressed in layers 2-3, most expressing both PV and CB. A morphological estimate of the dendritic extent for each subtype showed that PV and PV/CB cells demonstrated equally wide, horizontal and vertical arborizations, whereas CB cells had wide horizontal and restricted vertical arborizations. CR cells had restricted horizontal and very long vertical arborizations. Postsynaptic morphological targeting was also found to be specific, namely, PV(+) and PV/CB(+) nerve terminals (NTs) innervate perisomatic regions of principal cells. CR(+) NTs innervate only dendrites of principal cells, and CB(+) NTs innervate both somata and dendrites of principal cells. These data show highly complex innervation patterns for all of the CBP interneurons of the PC and form a basis for further studies in the plasticity of this region.

Cuvinte cheie: interneuron; calcium binding protein; piriform cortex; epilepsy; innervation