Inscriere cercetatori

Premii Ad Astra

premii Ad Astra

Asociația Ad Astra a anunțat câștigătorii Premiilor Ad Astra 2022: http://premii.ad-astra.ro/. Proiectul și-a propus identificarea și popularizarea modelelor de succes, a rezultatelor excepționale ale cercetătorilor români din țară și din afara ei.

Asociatia Ad Astra a cercetatorilor romani lanseaza BAZA DE DATE A CERCETATORILOR ROMANI DIN DIASPORA. Scopul acestei baze de date este aceea de a stimula colaborarea dintre cercetatorii romani de peste hotare dar si cu cercetatorii din Romania. Cercetatorii care doresc sa fie nominalizati in aceasta baza de date sunt rugati sa trimita un email la cristian.presura@gmail.com

Flutter Suppression of a Plate-Like Wing via Parametric Excitation

Domenii publicaţii > Stiinte ingineresti + Tipuri publicaţii > Articol în revistã ştiinţificã

Autori: Ibrahim, R. A., Castravete, S. C.

Editorial: Nonlinear Dynamics, 46(4), p.387-426, 2006.

Rezumat:

The present work is motivated by the well known stabilizing effect of parametric excitation of some dynamical systems such as the inverted pendulum. The possibility of suppressing wing flutter via parametric excitation along the plane of highest rigidity in the neighborhood of combination resonance is explored. The nonlinear equations of motion in the presence of incompressible fluid flow are derived using Hamilton’s principle and Theodorsen’s theory for modeling aerodynamic forces. In the presence of air flow, the bending and torsion modes possess nearly the same frequency. Under parametric excitation and in the absence of air flow, each mode oscillates at its own natural frequency. In the neighborhood of combination resonance, the nonlinear response is determined using the multiple scales method at the critical flutter speed and at slightly higher airflow speed. The domains of attraction and bifurcation diagrams are obtained to reveal the conditions under which the parametric excitation can provide stabilizing effect. The basins of attraction for different values of excitation amplitude reveal the stabilizing effect that takes place above a critical excitation level. Below that level, the response experiences limit cycle oscillations, cascade of period doubling, and chaos. For flow speed slightly higher than the critical flutter speed, the response experiences a train of spikes, known as “firing,” a term that is borrowed from neuroscience, followed by “refractory” or recovery effect, up to an excitation level above which the wing is stabilized. The results of the multiple scales method are verified using numerical simulation of the original nonlinear differential equations.

Cuvinte cheie: Wing flutter, bending-torsion coupling, parametric combination resonance, aerodynamic Theodorsen theory, firing phenomenon