Inscriere cercetatori

Daca aveti cont Ad Astra si de Facebook, intrati pe pagina de profil pentru a da dreptul sa va logati pe site doar cu acest buton.

Site nou !

Daca nu va puteti recupera parola (sau aveti alte probleme), scrieti-ne la pagina de contact. Situl vechi se gaseste la adresa


Topological classification of the Horthon-Strahler index on binary trees

Domenii publicaţii > Fizica + Tipuri publicaţii > Articol în revistã ştiinţificã

Autori: Z. Toroczkai

Editorial: Physical Review E, 65, p.016130, 2002.


The Horton-Strahler (HS) index has been shown to be relevant to a number of physical (such at diffusion limited aggregation) geological (river networks), biological (pulmonary arteries, blood vessels, various species of trees) and computational (use of registers) applications. Here we revisit the enumeration problem of the HS index on the rooted, unlabeled, plane binary set of trees, and enumerate the same index on the ambilateral set of rooted, plane binary set of trees of $n$ leaves. The ambilateral set is a set of trees whose elements cannot be obtained from each other via an arbitrary number of reflections with respect to vertical axes passing through any of the nodes on the tree. For the unlabeled set we give an alternate derivation to the existing exact solution. Extending this technique for the ambilateral set, which is described by an infinite series of non-linear functional equations, we are able to give a double-exponentially converging approximant to the generating functions in a neighborhood of their convergence circle, and derive an explicit asymptotic form for the number of such trees.

Cuvinte cheie: branching structures, topological indices