Inscriere cercetatori

Daca aveti cont Ad Astra si de Facebook, intrati pe pagina de profil pentru a da dreptul sa va logati pe site doar cu acest buton.

Site nou !

Daca nu va puteti recupera parola (sau aveti alte probleme), scrieti-ne la pagina de contact. Situl vechi se gaseste la adresa


The Effect of CeO2 Structure on the Activity of Supported Pd Catalysts Used for Methane Steam Reforming

Domenii publicaţii > Stiinte ingineresti + Tipuri publicaţii > Articol în revistã ştiinţificã

Autori: Radu Craciun, Wayne Daniell, and Helmut Knoezinger

Editorial: Elsevier, Applied Catalysis A: General, 230, p.153-168, 2002.


Palladium (Pd) supported on CeO2-promoted -Al2O3 with various CeO2 (ceria) crystallinities, were used as catalysts in the methane steam reforming reaction. X-ray diffraction analysis (XRD), FTIR spectroscopy of adsorbed CO, and X-ray photoelectron spectroscopy (XPS) were employed to characterize the samples in terms of Pd and CeO2 structure and dispersion on the Al2O3 support. These results were correlated with the observed catalytic activity and deactivation process. Arrhenius plots at steady-state conditions are presented as a function of CeO2 structure. Pd is present on the oxidized CeO2-promoted catalysts as Pd0, Pd1+ and Pd2+, at ratios strongly dependent on CeO2 structure. XRD and FTIR measurements indicated that Pd is well dispersed (particles < 2 nm) on crystalline CeO2 and it is agglomerated as large clusters (particles in 10-20 nm range) on amorphous CeO2. FTIR spectra of adsorbed CO revealed that under H2-rich atmosphere or in the presence of amorphous CeO2, encapsulation of Pd particles occurs. CeO2 structure influences the CH4 steam reforming reaction rates. Crystalline CeO2 and dispersed Pd favor high reaction rates (low activation energy). The presence of CeO2 as a promoter conferred high catalytic activity to the Pd-supported catalysts. The catalytic activity is significantly lower on Pd supported on -Al2O3 or on amorphous/reduced CeO2/Al2O3 catalysts. The reaction rates are two orders of magnitude higher on Pd/CeO2/-Al2O3 than on single component catalyst, which is attributed to a catalytic synergism between Pd and CeO2. The low rates on the reduced Pd/CeO2/Al2O3 catalysts can be correlated with the loss of Pd sites through encapsulation or particle agglomeration, a process found mostly irreversible after catalyst regeneration.

Cuvinte cheie: Pd, ceria catalysts, FTIR, CO probe molecules, CH4 steam reforming