Inscriere cercetatori

Daca aveti cont Ad Astra si de Facebook, intrati pe pagina de profil pentru a da dreptul sa va logati pe site doar cu acest buton.

Site nou !

Daca nu va puteti recupera parola (sau aveti alte probleme), scrieti-ne la pagina de contact. Situl vechi se gaseste la adresa


On using chained neural networks for software reliability prediction,

Domenii publicaţii > Stiinte ingineresti + Tipuri publicaţii > Articol în volumul unei conferinţe

Autori: Madsen, P. Thyregod, B.Burtschy, G. Albeanu and F. Popentiu.

Editorial: Taylor and Francisc Group, London, ISI Proceedings, ESREL 2007, The Safety & Reliability European Conference, Vol 1, p.411-418, 2007.


To predict the reliability of a software system based on inter-failure time series, neural net-works can be used to learn about the software behaviour. The paper considers the DLS (discounted least square) principle for constructing a learning algorithm. Various circular back-propagation networks are ex-perimented with a large number of inter-failure time series available for some projects. In order to deal also with multiple steps time series prediction, the networks can be chained in different ways. The experiments present the performances obtained with different chained architectures, including aspects concerning the con-vergence speed.

Cuvinte cheie: Retele neurale, predictie, fiabilitate,serii de timp // Neural networks, prediction, reliability, time series