Inscriere cercetatori

Asociatia Ad Astra a cercetatorilor romani lanseaza BAZA DE DATE A CERCETATORILOR ROMANI DIN DIASPORA. Scopul acestei baze de date este aceea de a stimula colaborarea dintre cercetatorii romani de peste hotare dar si cu cercetatorii din Romania. Cercetatorii care doresc sa fie nominalizati in aceasta baza de date sunt rugati sa trimita un email la

Exploiting discriminant information in non-negative matrix factorization with application to frontal face verification

Domenii publicaţii > Ştiinţe informatice + Tipuri publicaţii > Articol în revistã ştiinţificã

Autori: S. Zafeiriou, A. Tefas, I. Buciu, and I. Pitas

Editorial: IEEE Trans. on Neural Networks, 17(3), p.683 – 695, 2006.


Abstract—In this paper, two supervised methods for enhancing the classification accuracy of the Nonnegative Matrix Factorization (NMF) algorithm are presented. The idea is to extend the NMF algorithm in order to extract features that enforce not only the spatial locality, but also the separability between classes in a discriminant manner. The first method employs discriminant analysis in the features derived from NMF. In this way, a two-phase discriminant feature extraction procedure is implemented, namely NMF plus Linear Discriminant Analysis (LDA). The second method incorporates the discriminant constraints inside the NMF decomposition. Thus, a decomposition of a face to its discriminant parts is obtained and new update rules for both the weights and the basis images are derived. The introduced methods have been applied to the problem of frontal face verification using the well-known XM2VTS database. Both methods greatly enhance the performance of NMF for frontal face verification.

Cuvinte cheie: Non-negative matrix factorization, face verification