Inscriere cercetatori

Premii Ad Astra

premii Ad Astra

Asociația Ad Astra a anunțat câștigătorii Premiilor Ad Astra 2022: Proiectul și-a propus identificarea și popularizarea modelelor de succes, a rezultatelor excepționale ale cercetătorilor români din țară și din afara ei.

Asociatia Ad Astra a cercetatorilor romani lanseaza BAZA DE DATE A CERCETATORILOR ROMANI DIN DIASPORA. Scopul acestei baze de date este aceea de a stimula colaborarea dintre cercetatorii romani de peste hotare dar si cu cercetatorii din Romania. Cercetatorii care doresc sa fie nominalizati in aceasta baza de date sunt rugati sa trimita un email la

A new reduction method for phase equilibrium calculations

Domenii publicaţii > Stiinte ingineresti + Tipuri publicaţii > Articol în revistã ştiinţificã

Autori: Dan Vladimir Nichita and Alain Graciaa

Editorial: Elsevier , Fluid Phase Equilibria , 302 (1-2), p.226-233, 2011.


Phase equilibrium calculations require the most important computational effort in many process simulators and in reservoir compositional simulations. In this work, a new reduction method for phase equilibrium calculations is proposed. A new set of independent variables (and the related set of error equations) is introduced, based on the observation that, under certain conditions, the equilibrium ratios can be related only to some component properties (elements of the reduction matrix) and to equation of state parameters. The new formulation leads to simpler expressions of the elements of the Jacobian matrix. Some important features are presented, and an interesting and useful link with classical flash calculation methods is revealed. The reliability and efficiency of the proposed method are tested on several synthetic and reservoir hydrocarbon mixtures. The proposed method proves to be robust and it performs in all cases better than previous reduction methods. Finally, it is discussed how the new set of independent variables can be used for a variety of phase equilibrium calculations. © 2010 Elsevier B.V. All rights reserved.

Cuvinte cheie: Binary interaction parameters, Convergence, Cubic equation of state, Flash calculations, Newton-Raphson method, Phase stability, Reduction method