Inscriere cercetatori

Daca aveti cont Ad Astra si de Facebook, intrati pe pagina de profil pentru a da dreptul sa va logati pe site doar cu acest buton.

Site nou !

Daca nu va puteti recupera parola (sau aveti alte probleme), scrieti-ne la pagina de contact. Situl vechi se gaseste la adresa


Mathematical and numerical analysis of capillarity problems and processes

Domenii publicaţii > Fizica + Tipuri publicaţii > Capitol de carte

Autori: L. Braescu, S. Epure, Th. Duffar

Editorial: John Wiley & Sons Ltd, Crystal growth processes based on capillarity: Czochralski, floating zone, shaping and crucible techniques, p.465-524, 2010.


Chapter contains a mathematical formulation of the capillary problem. Therefore, the boundary value problem for the Young-Laplace equation in the 3D and axi-symmetric cases is presented and the initial and boundary condition of the 2D meniscus problem are given. The growth angle criterion and some approximated solutions of the 2D meniscus problem are also included. Some analytical and numerical solutions for the meniscus equation in the Cz, EFG and Dewetted Bridgman growth techniques are presented.

Cuvinte cheie: Ecuatia Young-Laplace, Cz, EFG si Dewetted Bridgman // Young-Laplace equation, Cz, EFG and Dewetted Bridgman growth techniques