Inscriere cercetatori

Premii Ad Astra

premii Ad Astra

Asociația Ad Astra a anunțat câștigătorii Premiilor Ad Astra 2022: http://premii.ad-astra.ro/. Proiectul și-a propus identificarea și popularizarea modelelor de succes, a rezultatelor excepționale ale cercetătorilor români din țară și din afara ei.

Asociatia Ad Astra a cercetatorilor romani lanseaza BAZA DE DATE A CERCETATORILOR ROMANI DIN DIASPORA. Scopul acestei baze de date este aceea de a stimula colaborarea dintre cercetatorii romani de peste hotare dar si cu cercetatorii din Romania. Cercetatorii care doresc sa fie nominalizati in aceasta baza de date sunt rugati sa trimita un email la cristian.presura@gmail.com

Modeling and Tracking the Driving Environment With a Particle-Based Occupancy Grid

Domenii publicaţii > Stiinte ingineresti + Tipuri publicaţii > Articol în revistã ştiinţificã

Autori: R. Danescu, F. Oniga, S. Nedevschi

Editorial: Fei-Yue Wang, IEEE, IEEE Transactions on Intelligent Transportation Systems, 12(4), p.1331-1342, 2011.

Rezumat:

Modeling and tracking the driving environment is a complex problem due to the heterogeneous nature of the real world. In many situations, modeling the obstacles and the driving surfaces can be achieved by the use of geometrical objects, and tracking becomes the problem of estimating the parameters of these objects. In the more complex cases, the scene can be modeled and tracked as an occupancy grid. This paper presents a novel occupancy grid tracking solution based on particles for tracking the dynamic driving environment. The particles will have a dual nature—they will denote hypotheses, as in the particle filtering algorithms, but they will also be the building blocks of our modeled world. The particles have position and speed, and they can migrate in the grid from cell to cell, depending on their motion model and motion parameters, but they will be also created and destroyed using a weighting-resampling mechanism that is specific to particle filtering algorithms. The tracking algorithm will be centered on particles, instead of cells. An obstacle grid derived from processing a stereovision-generated elevation map is used as measurement information, and the measurement model takes into account the uncertainties of the stereo reconstruction. The resulting system is a flexible real-time tracking solution for dynamic unstructured driving environments.

Cuvinte cheie: occupancy grids, environment modeling, tracking, particle filtering, stereovision

URL: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5941005