Scopul nostru este sprijinirea şi promovarea cercetării ştiinţifice şi facilitarea comunicării între cercetătorii români din întreaga lume.
Domenii publicaţii > Ştiinţe medicale + Tipuri publicaţii > Articol în revistã ştiinţificã
Autori: Obreja O, Ringkamp M, Turnquist B, Hirth M, Forsch E, Rukwied R, Petersen M, Schmelz M.
Editorial: Elsevier, Pain, 152, p.2138-46, 2011.
Rezumat:
Nerve growth factor (NGF) induces acute sensitization of nociceptive sensory endings and long-lasting hyperalgesia. NGF modulation of sodium channel expression might contribute to neurotrophin-induced hyperalgesia. Here, we investigated NGF-evoked changes of the activity-dependent slowing of conduction in porcine C-fibers. Animals received intradermal injections of NGF (2 μg or 8 μg) or saline in both hind limbs. Extracellular recordings from the saphenous nerves were performed 1 week later. Based on sensory thresholds and electrically induced activity-dependent slowing (ADS) of axonal conduction, C-fibers were classified as mechano-sensitive afferents, mechano-insensitive afferents, cold nociceptors, and sympathetic efferents. NGF (2 μg) increased conduction velocity in C-fibers from 1.0±0.05 m/s to 1.2±0.07 m/s. In mechano-insensitive afferents, NGF (8 μg) reduced activity-dependent slowing of conduction, from 5.3±0.2% to 3.2±0.5% (0.125-0.5 Hz stimulation) and from 28.5±1.3% to 20.9±1.9% (2 Hz stimulation), such that ADS no longer differentiated between mechano-sensitive and mechano-insensitive fibers. Accordingly, the number of fibers with pronounced ADS decreased but more units with pronounced ADS were mechano-sensitive. Spontaneously active C-fibers were increased above the control level (1%) by NGF 8 μg (8%). The results demonstrate that NGF changes the functional axonal characteristics of mechano-insensitive C-fibers and enhances spontaneous activity thereby possibly contributing to hyperalgesia.
Cuvinte cheie: hyperalgesia, mecahnical sensitization, nociception, growth factors, peripheral sensitization