Inscriere cercetatori

Premii Ad Astra

premii Ad Astra

Asociația Ad Astra a anunțat câștigătorii Premiilor Ad Astra 2022: http://premii.ad-astra.ro/. Proiectul și-a propus identificarea și popularizarea modelelor de succes, a rezultatelor excepționale ale cercetătorilor români din țară și din afara ei.

Asociatia Ad Astra a cercetatorilor romani lanseaza BAZA DE DATE A CERCETATORILOR ROMANI DIN DIASPORA. Scopul acestei baze de date este aceea de a stimula colaborarea dintre cercetatorii romani de peste hotare dar si cu cercetatorii din Romania. Cercetatorii care doresc sa fie nominalizati in aceasta baza de date sunt rugati sa trimita un email la cristian.presura@gmail.com

NGF enhances electrically induced pain, but not axon reflex sweating.

Domenii publicaţii > Ştiinţe medicale + Tipuri publicaţii > Articol în revistã ştiinţificã

Autori: Obreja O, Kluschina O, Mayer A, Hirth M, Schley M, Schmelz M, Rukwied R.

Editorial: Elsevier, Pain, 152, p.1856-63, 2011.

Rezumat:

High-affinity receptors for nerve growth factor (NGF) are found on nociceptors and sympathetic efferents. NGF is known to sensitize nociceptors, increase innervation density, and fire frequency of sympathetic fibers. We explored axonal sensitization of afferent and efferent fibers following intracutaneous injection of NGF in human and pig skin. In humans, frequency-dependent (5, 20, 100 Hz) electrically induced pain was assessed 1, 3, 7, 21, and 49 days post injection. Sweat output was recorded in parallel using the quantitative sudomotor axon reflex test (QSART). Electrically induced pain ratings (7.5 mA for 30 s) significantly increased at the NGF sites for 5 Hz (numeric rating scale [NRS] 6±0.5 vs 3.7±0.4), 20 Hz (NRS 7.2±0.4 vs 5±0.5), and 100 Hz stimulation (NRS 6.9±0.4 vs 5.4±0.3) at day 21, and also for 5 Hz at day 49 (NRS 5.4±0.4 vs 3.8±0.3). Electrically evoked QSART increased frequency dependent, but was not altered by NGF throughout the entire observation period (average QSART at 5 Hz: 3 mL/h/m(2), 20 Hz: 9 mL/h/m(2), 100 Hz: 10 mL/h/m(2)). Similarly, NGF did not change the activity-dependent slowing of conduction of sympathetic efferents (6±2% vs 5.1±1.5%, for 3 minutes, 2 Hz) in pig single-fiber recordings. In parallel to the increased pain ratings recorded in humans, activity-dependent slowing of mechano-insensitive nociceptors was reduced by NGF (18.1±2% vs 29±1.4%). In summary, axonal sensitization of nociceptors by NGF could underlie the hyperalgesia to electrical stimulation. Enhanced responses were limited to nociceptors, as no sensitization was found in sympathetic efferent neurons.

Cuvinte cheie: mechano-insensitive nociceptors, activity dependent slowing, propagation failure

URL: http://www.ncbi.nlm.nih.gov/pubmed/21546161