Inscriere cercetatori

Premii Ad Astra

premii Ad Astra

Asociația Ad Astra a anunțat câștigătorii Premiilor Ad Astra 2022: http://premii.ad-astra.ro/. Proiectul și-a propus identificarea și popularizarea modelelor de succes, a rezultatelor excepționale ale cercetătorilor români din țară și din afara ei.

Asociatia Ad Astra a cercetatorilor romani lanseaza BAZA DE DATE A CERCETATORILOR ROMANI DIN DIASPORA. Scopul acestei baze de date este aceea de a stimula colaborarea dintre cercetatorii romani de peste hotare dar si cu cercetatorii din Romania. Cercetatorii care doresc sa fie nominalizati in aceasta baza de date sunt rugati sa trimita un email la cristian.presura@gmail.com

Efficiently learning the preferences of people

Domenii publicaţii > Ştiinţe informatice + Tipuri publicaţii > Articol în revistã ştiinţificã

Autori: Adriana Birlutiu, Perry Groot, Tom Heskes

Editorial: James Cussens, Springer, Machine Learning, p.1-28, 2012.

Rezumat:

This paper presents a framework for optimizing the preference learning process. In many real-world applications in which preference learning is involved the available training data is scarce and obtaining labeled training data is expensive. Fortunately in many of the preference learning situations data is available from multiple subjects. We use the multitask formalism to enhance the individual training data by making use of the preference information learned from other subjects. Furthermore, since obtaining labels is expensive, we optimally choose which data to ask a subject for labelling to obtain the most of information about her/his preferences. This paradigm—called active learning—has hardly been studied in a multi-task formalism. We propose an alternative for the standard criteria in active learning which actively chooses queries by making use of the available preference data from other subjects. The advantage of this alternative is the reduced computation costs and reduced time subjects are involved. We validate empirically our approach on three real-world data sets involving the preferences of people.

Cuvinte cheie: Learning preferences, Active learning, Experimental design, Multi-task learning, Hierarchical modeling

URL: http://rd.springer.com/article/10.1007/s10994-012-5297-4