Inscriere cercetatori

Premii Ad Astra

premii Ad Astra

Asociația Ad Astra a anunțat câștigătorii Premiilor Ad Astra 2022: Proiectul și-a propus identificarea și popularizarea modelelor de succes, a rezultatelor excepționale ale cercetătorilor români din țară și din afara ei.

Asociatia Ad Astra a cercetatorilor romani lanseaza BAZA DE DATE A CERCETATORILOR ROMANI DIN DIASPORA. Scopul acestei baze de date este aceea de a stimula colaborarea dintre cercetatorii romani de peste hotare dar si cu cercetatorii din Romania. Cercetatorii care doresc sa fie nominalizati in aceasta baza de date sunt rugati sa trimita un email la

Rapid and robust resolution of Underwood equations using convex transformations

Domenii publicaţii > Stiinte ingineresti + Tipuri publicaţii > Articol în revistã ştiinţificã

Autori: Dan Vladimir Nichita, Claude F. Leibovici

Editorial: Elsevier, Computers & Chemical Engineering, 71, p.574–590, 2014.


In this work, a new method is proposed for solving Underwood’s equations. Newton methods cannot be used without interval control, and may require many iterations or experience severe convergence problems if the roots are near poles and the initial guess is poor. It is shown that removing only one adjacent asymptote leads to convex functions, while removing both asymptotes leads to quasi convex functions which are close to linearity on wide intervals. Using a change of variable, a pair of convex functions is defined; at each point within the search interval one of the two functions is guaranteed to satisfy the monotonic convergence condition for Newton methods. The search interval is restricted to narrow solution windows (simple and costless) and a simple high quality initial guess can be obtained using their bounds. Two solution algorithms are presented: in the first one, Newton (including higher-order) methods can be safely applied without any interval control using the appropriate convex function; in the second one, Newton iterations are applied to a quasi-convex function, and convex functions are used only if an iterate goes out of its bounds. The algorithms are tested on several numerical examples, some of them recognized as very difficult in the literature. The proposed solution methods are simple, robust, very rapid (quadratic or super-quadratic convergence) and easy to implement. In most cases, convergence is obtained in 2–3 Newton iterations, even for roots extremely close to a pole.

Cuvinte cheie: Underwood equations, Roots,Convergence, Convexity,Change of variables, Newton method