Inscriere cercetatori

Premii Ad Astra

premii Ad Astra

Asociația Ad Astra a anunțat câștigătorii Premiilor Ad Astra 2022: Proiectul și-a propus identificarea și popularizarea modelelor de succes, a rezultatelor excepționale ale cercetătorilor români din țară și din afara ei.

Asociatia Ad Astra a cercetatorilor romani lanseaza BAZA DE DATE A CERCETATORILOR ROMANI DIN DIASPORA. Scopul acestei baze de date este aceea de a stimula colaborarea dintre cercetatorii romani de peste hotare dar si cu cercetatorii din Romania. Cercetatorii care doresc sa fie nominalizati in aceasta baza de date sunt rugati sa trimita un email la

Glycolytic metabolite methylglyoxal inhibits cold and menthol activation of the transient receptor potential melastatin type 8 channel.

Autori: Ciobanu AC, Selescu T, Gasler I, Soltuzu L, Babes A.

Editorial: J Neurosci Res, 94(3), p.282-94, 2016.


Ciobanu AC1, Selescu T1, Gasler I1, Soltuzu L1, Babes A1.

1Department of Anatomy, Physiology, and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania.


Methylglyoxal (MG) is a reactive dicarbonyl compound involved in protein modifications linked to diabetes mellitus. The plasma level of MG is elevated in diabetic patients, particularly those with painful diabetic neuropathy. Diabetic neuropathy is often associated with spontaneous pain and altered thermal perception. This study assesses effects of MG on TRPM8, an ion channel involved in innocuous cold sensing and cold allodynia and also in cold-mediated analgesia. Acute treatment with MG inhibited the activation of recombinant rat and human transient receptor potential melastatin type 8 (TRPM8) by cold and chemical agonists. A similar effect was observed when native TRPM8 was investigated in cultured rat dorsal root ganglion (DRG) neurons. DRG neurons treated with MG for 16-24 hr displayed a significant reduction in the fraction of cold- and menthol-sensitive neurons, most likely expressing TRPM8. The fraction of allyl isothiocyanate-sensitive neurons was also reduced, and the coexpression among different neuronal populations was affected. The same prolonged exposure to MG significantly reduced the expression of TRPM8 at the mRNA level. Overall, our data provide evidence for decreased activity and expression level of TRPM8 in the presence of MG, which may be linked to some of the alterations in pain and temperature sensing reported by diabetic patients.