Inscriere cercetatori

Premii Ad Astra

premii Ad Astra

Asociația Ad Astra anunță lansarea proiectului Premiilor Ad Astra 2022 (link aici), care își propune identificarea și popularizarea modelelor de succes, a rezultatelor excepționale ale cercetătorilor români din țară și din afara ei. Regulamentul de participare se poate gasi aici, iar  pagina de inscriere se poate accesa aici.

Asociatia Ad Astra a cercetatorilor romani lanseaza BAZA DE DATE A CERCETATORILOR ROMANI DIN DIASPORA. Scopul acestei baze de date este aceea de a stimula colaborarea dintre cercetatorii romani de peste hotare dar si cu cercetatorii din Romania. Cercetatorii care doresc sa fie nominalizati in aceasta baza de date sunt rugati sa trimita un email la cristian.presura@gmail.com

Characteristic varieties of arrangements

Domenii publicaţii > Matematica + Tipuri publicaţii > Articol în revistã ştiinţificã

Autori: D.C. Cohen, A.I. Suciu

Editorial: Mathematical Proceedings of the Cambridge Philosophical Society, 127 (1), p.33-53, 1999.

Rezumat:

The k-th Fitting ideal of the Alexander invariant B of an arrangement A of n complex hyperplanes defines a characteristic subvariety, V_k(A), of the complex algebraic n-torus. In the combinatorially determined case where B decomposes as a direct sum of local Alexander invariants, we obtain a complete description of V_k(A). For any arrangement A, we show that the tangent cone at the identity of this variety coincides with R^1_k(A), one of the cohomology support loci of the Orlik-Solomon algebra. Using work of Arapura and Libgober, we conclude that all positive-dimensional components of V_k(A) are combinatorially determined, and that R^1_k(A) is the union of a subspace arrangement in C^n, thereby resolving a conjecture of Falk. We use these results to study the reflection arrangements associated to monomial groups.

Cuvinte cheie: arrangement, characteristic variety, Alexander invariant

URL: http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=37609