Inscriere cercetatori

Premii Ad Astra

premii Ad Astra

Asociația Ad Astra anunță lansarea proiectului Premiilor Ad Astra 2022 (link aici), care își propune identificarea și popularizarea modelelor de succes, a rezultatelor excepționale ale cercetătorilor români din țară și din afara ei. Regulamentul de participare se poate gasi aici, iar  pagina de inscriere se poate accesa aici.

Asociatia Ad Astra a cercetatorilor romani lanseaza BAZA DE DATE A CERCETATORILOR ROMANI DIN DIASPORA. Scopul acestei baze de date este aceea de a stimula colaborarea dintre cercetatorii romani de peste hotare dar si cu cercetatorii din Romania. Cercetatorii care doresc sa fie nominalizati in aceasta baza de date sunt rugati sa trimita un email la cristian.presura@gmail.com

Lower central series and free resolutions of hyperplane arrangements

Domenii publicaţii > Matematica + Tipuri publicaţii > Articol în revistã ştiinţificã

Autori: H.K. Schenck, A.I. Suciu

Editorial: Transactions of the American Mathematical Society, 354 (9), p.3409-3433, 2002.

Rezumat:

If $M$ is the complement of a hyperplane arrangement, and $A=H^*(M,k)$ is the cohomology ring of $M$ over a field of characteristic 0, then the ranks, $phi_k$, of the lower central series quotients of $pi_1(M)$ can be computed from the Betti numbers, $b_{ii}=dim_{k} Tor^A_i(k,k)_i$, of the linear strand in a (minimal) free resolution of $k$ over $A$. We use the Cartan-Eilenberg change of rings spectral sequence to relate these numbers to the graded Betti numbers, $b’_{ij}=dim_{k} Tor^E_i(A,k)_j$, of a (minimal) resolution of $A$ over the exterior algebra $E$.
From this analysis, we recover a formula of Falk for $phi_3$, and obtain a new formula for $phi_4$. The exact sequence of low degree terms in the spectral sequence allows us to answer a question of Falk on graphic arrangements, and also shows that for these arrangements, the algebra $A$ is Koszul iff the arrangement is supersolvable. We also give combinatorial lower bounds on the Betti numbers, $b’_{i,i+1}$, of the linear strand of the free resolution of $A$ over $E$; if the lower bound is attained for $i = 2$, then it is attained for all $i ge 2$. For such arrangements, we compute the entire linear strand of the resolution, and we prove that all components of the first resonance variety of $A$ are local. For graphic arrangements (which do not attain the lower bound, unless they have no braid sub-arrangements), we show that $b’_{i,i+1}$ is determined by the number of triangles and $K_4$ subgraphs in the graph.

Cuvinte cheie: lower central series, free resolution, hyperplane arrangement, change of rings spectral sequence, Koszul algebra, linear strand, graphic arrangements

URL: http://www.ams.org/journal-getitem?pii=S0002-9947-02-03021-0