Inscriere cercetatori

Daca aveti cont Ad Astra si de Facebook, intrati pe pagina de profil pentru a da dreptul sa va logati pe site doar cu acest buton.

Site nou !

Daca nu va puteti recupera parola (sau aveti alte probleme), scrieti-ne la pagina de contact. Situl vechi se gaseste la adresa


Homotopy Lie algebras, lower central series and the Koszul property

Domenii publicaţii > Matematica + Tipuri publicaţii > Articol în revistã ştiinţificã

Autori: S. Papadima, A.I. Suciu

Editorial: Geometry and Topology, 8, p.1079-1125, 2004.


Let X and Y be finite-type CW-complexes (X connected, Y simply connected), such that the rational cohomology ring of Y is a k-rescaling of the rational cohomology ring of X. Assume H^*(X,Q) is a Koszul algebra. Then, the homotopy Lie algebra pi_*(Omega Y) tensor Q equals, up to k-rescaling, the graded rational Lie algebra associated to the lower central series of pi_1(X). If Y is a formal space, this equality is actually equivalent to the Koszulness of H^*(X,Q). If X is formal (and only then), the equality lifts to a filtered isomorphism between the Malcev completion of pi_1(X) and the completion of [Omega S^{2k+1}, Omega Y]. Among spaces that admit naturally defined homological rescalings are complements of complex hyperplane arrangements, and complements of classical links. The Rescaling Formula holds for supersolvable arrangements, as well as for links with connected linking graph.

Cuvinte cheie: Homotopy groups, Whitehead product, rescaling, Koszul algebra, lower central series, Quillen functors, Milnor-Moore group, Malcev completion, formal, coformal, subspace arrangement, spherical link