Inscriere cercetatori

Premii Ad Astra

premii Ad Astra

Asociația Ad Astra anunță lansarea proiectului Premiilor Ad Astra 2022 (link aici), care își propune identificarea și popularizarea modelelor de succes, a rezultatelor excepționale ale cercetătorilor români din țară și din afara ei. Regulamentul de participare se poate gasi aici, iar  pagina de inscriere se poate accesa aici.

Asociatia Ad Astra a cercetatorilor romani lanseaza BAZA DE DATE A CERCETATORILOR ROMANI DIN DIASPORA. Scopul acestei baze de date este aceea de a stimula colaborarea dintre cercetatorii romani de peste hotare dar si cu cercetatorii din Romania. Cercetatorii care doresc sa fie nominalizati in aceasta baza de date sunt rugati sa trimita un email la cristian.presura@gmail.com

Geometric and algebraic aspects of 1-formality

Domenii publicaţii > Matematica + Tipuri publicaţii > Articol în revistã ştiinţificã

Autori: S. Papadima, A. Suciu

Editorial: Bulletin Math'ematique de la Soci'et'e des Sciences Math'ematiques de Roumanie, 52 (3), p.355-375, 2009.

Rezumat:

Formality is a topological property, defined in terms of Sullivan’s model for a space. In the simply-connected setting, a space is formal if its rational homotopy type is determined by the rational cohomology ring. In the general setting, the weaker 1-formality property allows one to reconstruct the rational pro-unipotent completion of the fundamental group, solely from the cup products of degree 1 cohomology classes. In this note, we survey various facets of formality, with emphasis on the geometric and algebraic implications of 1-formality, and its relations to the cohomology jump loci and the Bieri-Neumann-Strebel invariant. We also produce examples of 4-manifolds W such that, for every compact K”ahler manifold M, the product Mtimes W has the rational homotopy type of a K”ahler manifold, yet M x W admits no K”ahler metric.

Cuvinte cheie: Formality, fundamental group, cohomology jumping loci, holonomy Lie algebra, Bieri-Neumann-Strebel invariant, Malcev completion, lower central series, K"ahler manifold, quasi-K"ahler manifold, Milnor fiber, hyperplane arrangement, Artin group, Bestvina-Brady group, pencil, fibration, monodromy

URL: http://www.rms.unibuc.ro/bulletin/volumes/52-3/node16.html