Inscriere cercetatori

Asociatia Ad Astra a cercetatorilor romani lanseaza BAZA DE DATE A CERCETATORILOR ROMANI DIN DIASPORA. Scopul acestei baze de date este aceea de a stimula colaborarea dintre cercetatorii romani de peste hotare dar si cu cercetatorii din Romania. Cercetatorii care doresc sa fie nominalizati in aceasta baza de date sunt rugati sa trimita un email la cristian.presura@gmail.com

Evolving hypernetwork models of binary time series for forecasting price movements on stock markets

Domenii publicaţii > Ştiinţe informatice + Tipuri publicaţii > Articol în volumul unei conferinţe

Autori: E. . Bautu, S. Kim, A. Bautu, H. Luchian, and B.-T. Zhang

Editorial: IEEE Congress on Evolutionary Computation (CEC 2009) , p.166-173, 2009.

Rezumat:

The paper proposes a hypernetwork-based method for stock market prediction through a binary time series problem. Hypernetworks are a random hypergraph structure of higher-order probabilistic relations of data. The problem we tackle concerns the prediction of price movements (up/down) on stock markets. Compared to previous approaches, the proposed method discovers a large population of variable subpatterns, i.e. local and global patterns, using a novel evolutionary hypernetwork. An output is obtained from combining these patterns. In the paper, we describe two methods for assessing the prediction quality of the hypernetwork approach. Applied to the Dow Jones Industrial Average Index and the Korea Composite Stock Price Index data, the experimental results show that the proposed method effectively learns and predicts the time series information. In particular, the hypernetwork approach outperforms other machine learning methods such as support vector machines, naive Bayes, multilayer perceptrons, and k-nearest neighbors.

Cuvinte cheie: forecasting, time series, hypernetwork, machine learning // forecasting, time series, hypernetwork, machine learning

URL: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=4982922&arnumber=4982944&count=448&index=21