Inscriere cercetatori

Daca aveti cont Ad Astra si de Facebook, intrati pe pagina de profil pentru a da dreptul sa va logati pe site doar cu acest buton.

Site nou !

Daca nu va puteti recupera parola (sau aveti alte probleme), scrieti-ne la pagina de contact. Situl vechi se gaseste la adresa


Green’s Conjecture for curves on arbitrary K3 surfaces

Domenii publicaţii > Matematica + Tipuri publicaţii > Articol în revistã ştiinţificã

Autori: Marian Aprodu, Gavril Farkas

Editorial: Cambridge University Press, Compositio Mathematica, 147, p.839-851, 2011.


Green’s conjecture predicts than one can read off special linear series on an algebraic curve, by looking at the syzygies of its canonical embedding. We extend Voisin’s results on syzygies of K3 sections, to the case of K3 surfaces with arbitrary Picard lattice. This, coupled with results of Voisin and Hirschowitz–Ramanan, provides a complete solution to Green’s conjecture for smooth curves on arbitrary K3 surfaces.

Cuvinte cheie: syzygy, canonical curve, Brill–Noether theory