Inscriere cercetatori

Daca aveti cont Ad Astra si de Facebook, intrati pe pagina de profil pentru a da dreptul sa va logati pe site doar cu acest buton.

Site nou !

Daca nu va puteti recupera parola (sau aveti alte probleme), scrieti-ne la pagina de contact. Situl vechi se gaseste la adresa


Geometric and homological finiteness in free abelian covers

Domenii publicaţii > Matematica + Tipuri publicaţii > Articol în volumul unei conferinţe

Autori: A. I. Suciu

Editorial: Anders Bjorner, Fred Cohen, Corrado De Concini, Claudo Procesi, Mario Salvetti, Edizioni della Normale, Pisa, Configuration Spaces: Geometry, Topology and Combinatorics, p.461-501, 2012.


We describe some of the connections between the Bieri-Neumann-Strebel-Renz invariants, the Dwyer-Fried invariants, and the cohomology support loci of a space X. Under suitable hypotheses, the geometric and homological finiteness properties of regular, free abelian covers of X can be expressed in terms of the resonance varieties, extracted from the cohomology ring of X. In general, though, translated components in the characteristic varieties affect the answer. We illustrate this theory in the setting of toric complexes, as well as smooth, complex projective and quasi-projective varieties, with special emphasis on configuration spaces of Riemann surfaces and complements of hyperplane arrangements.

Cuvinte cheie: Bieri-Neumann-Strebel-Renz invariant, free abelian cover, Dwyer-Fried invariant, characteristic variety, exponential tangent cone, resonance variety, toric complex, quasi-projective variety, configuration space, hyperplane arrangement