Inscriere cercetatori

Premii Ad Astra

premii Ad Astra

Asociația Ad Astra a anunțat câștigătorii Premiilor Ad Astra 2022: Proiectul și-a propus identificarea și popularizarea modelelor de succes, a rezultatelor excepționale ale cercetătorilor români din țară și din afara ei.

Asociatia Ad Astra a cercetatorilor romani lanseaza BAZA DE DATE A CERCETATORILOR ROMANI DIN DIASPORA. Scopul acestei baze de date este aceea de a stimula colaborarea dintre cercetatorii romani de peste hotare dar si cu cercetatorii din Romania. Cercetatorii care doresc sa fie nominalizati in aceasta baza de date sunt rugati sa trimita un email la

Characteristic varieties and Betti numbers of free abelian covers

Domenii publicaţii > Matematica + Tipuri publicaţii > Articol în revistã ştiinţificã

Autori: A.I. Suciu

Editorial: Oxford University Press, International Mathematics Research Notices, 2014, p.1063-1124, 2014.


The regular Z^r-covers of a finite cell complex X are parameterized by the Grassmannian of r-planes in H^1(X,Q). Moving about this variety, and recording when the Betti numbers b_1,…, b_i of the corresponding covers are finite carves out certain subsets Omega^i_r(X) of the Grassmannian.

We present here a method, essentially going back to Dwyer and Fried, for computing these sets in terms of the jump loci for homology with coefficients in rank 1 local systems on X. Using the exponential tangent cones to these jump loci, we show that each Omega-invariant is contained in the complement of a union of Schubert varieties associated to an arrangement of linear subspaces in H^1(X,Q).

The theory can be made very explicit in the case when the characteristic varieties of X are unions of translated tori. But even in this setting, the Omega-invariants are not necessarily open, not even when X is a smooth complex projective variety. As an application, we discuss the geometric finiteness properties of some classes of groups.

Cuvinte cheie: Free abelian cover, characteristic variety, exponential tangent cone, Dwyer-Fried set, special Schubert variety, translated subtorus, Kaehler manifold, quasi-Kaehler manifold, hyperplane arrangement, property FP_n