Inscriere cercetatori

Premii Ad Astra

premii Ad Astra

Asociația Ad Astra a anunțat câștigătorii Premiilor Ad Astra 2022: http://premii.ad-astra.ro/. Proiectul și-a propus identificarea și popularizarea modelelor de succes, a rezultatelor excepționale ale cercetătorilor români din țară și din afara ei.

Asociatia Ad Astra a cercetatorilor romani lanseaza BAZA DE DATE A CERCETATORILOR ROMANI DIN DIASPORA. Scopul acestei baze de date este aceea de a stimula colaborarea dintre cercetatorii romani de peste hotare dar si cu cercetatorii din Romania. Cercetatorii care doresc sa fie nominalizati in aceasta baza de date sunt rugati sa trimita un email la cristian.presura@gmail.com

Tyrosinase processing and intracellular trafficking is disrupted in mouse primary melanocytes carrying the underwhite (uw) mutation. A model for oculocutaneous albinism (OCA) Type 4

Domenii publicaţii > Biologie + Tipuri publicaţii > Articol în revistã ştiinţificã

Autori: Costin, G.-E., Valencia, J. C., Vieira, W. D., Lamoreux, M. L., Hearing, V. J.

Editorial: J. Cell. Sci., 116 (15), p.3203-3212, 2003.

Rezumat:

Oculocutaneous albinism (OCA) type 4 is a newly identified human autosomal recessive hypopigmentary disorder that disrupts pigmentation in the skin, hair and eyes. Three other forms of OCA have been previously characterized, each resulting from the aberrant processing and/or sorting of tyrosinase, the enzyme critical to pigment production in mammals. The disruption of tyrosinase trafficking occurs at the level of the endoplasmic reticulum (ER) in OCA1 and OCA3, but at the post-Golgi level in OCA2. The gene responsible for OCA4 is the human homologue of the mouse underwhite (uw) gene, which encodes the membrane-associated transporter protein (MATP). To characterize OCA4, we investigated the processing and sorting of melanogenic proteins in primary melanocytes derived from uw/uw mice and from wild-type mice. OCA4 melanocytes were found to be constantly secreted into the medium dark vesicles that contain tyrosinase and two other melanogenic enzymes, Tyrp1 (tyrosinase-related protein 1) and Dct (DOPAchrome tautomerase); this secretory process is not seen in wild-type melanocytes. Although tyrosinase was synthesized at comparable rates in wild-type and in uw-mutant melanocytes, tyrosinase activity in uw-mutant melanocytes was only about 20% of that found in wild-type melanocytes, and was enriched only about threefold in melanosomes compared with the ninefold enrichment in wild-type melanocytes. OCA4 melanocytes showed a marked difference from wild-type melanocytes in that tyrosinase was abnormally secreted from the cells, a process similar to that seen in OCA2 melanocytes, which results from a mutation of the pink-eyed dilution (P) gene. The P protein and MATP have 12 transmembrane regions and are predicted to function as transporters. Ultrastructural analysis shows that the vesicles secreted from OCA4 melanocytes are mostly early stage melanosomes. Taken together, our results show that in OCA4 melanocytes, tyrosinase processing and intracellular trafficking to the melanosome is disrupted and the enzyme is abnormally secreted from the cells in immature melanosomes, which disrupts the normal maturation process of those organelles. This mechanism explains the hypopigmentary phenotype of these cells and provides new insights into the involvement of transporters in the normal physiology of melanocytes.

Cuvinte cheie: journal