##### The boundary manifold of a complex line arrangement

We study the topology of the boundary manifold of a line arrangement in CP^2, with emphasis on the fundamental group G and associated invariants. We determine the Alexander polynomial Delta(G), and more generally, the twisted Alexander polynomial associated to the abelianization of G and an arbitrary complex representation. We give an explicit description of the unit ball in the Alexander norm, and use it to analyze certain Bieri–Neumann–Strebel

Read more